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The structure of quasicrystals is aperiodic. Their diffraction patterns, however,

can be considered periodic. They are composed solely of series of peaks which

exhibit a fully periodic arrangement in reciprocal space. Furthermore, the peak

intensities in each series define the so-called ‘envelope function’. A Fourier

transform of the envelope function gives an average unit cell, whose definition is

based on the statistical distribution of atomic coordinates in physical space. If

such a distribution is lifted to higher-dimensional space, it becomes the so-called

atomic surface – the most fundamental feature of higher-dimensional analysis.

1. Introduction

Quasicrystals were introduced to the physics of new materials

in 1984 (Shechtman et al., 1984; Levine & Steinhardt, 1984),

two years after they were discovered by Dan Shechtman.

His achievement was awarded with the Nobel Prize in

Chemistry in 2011. One of the most prominent features of

quasicrystals is their diffraction pattern. Although the struc-

ture of quasicrystals is aperiodic, their diffraction patterns

contain sharp peaks, which proves that they have good

long-range order. Additionally, the patterns exhibit point

symmetries considered forbidden in classical crystallography

(e.g. fivefold), because of their incompatibility with periodic

(translational) long-range order. This is a first-hand proof of

the aperiodicity of quasicrystalline structures. Conversely,

the reverse reasoning, that is the structure aperiodicity leads

to the pattern aperiodicity, is far from being true. In this

paper it is demonstrated that the periodicities in the diffrac-

tion patterns of aperiodic structures carry important infor-

mation about their structure. Two model structures will be

analysed: a one-dimensional quasicrystal, the Fibonacci chain,

and a two-dimensional quasicrystal represented by the

Penrose tiling.

The structure of quasicrystals and modulated structures is

often described in a higher-dimensional space. This approach

allows one to restore periodicity at the expense of increasing

the dimensionality of space used for the description. It leads

also to derivation of a higher-dimensional reciprocal lattice

allowing a full description of the diffraction pattern using

multiple indices. The number of indices needed for such a

description is equal to the rank of the higher-dimensional

space. Higher-dimensional analysis is an excellent mathema-

tical tool, but it turns atoms decorating the structure to

stretched multidimensional objects called atomic surfaces. The

atomic surface itself is a non-physical object defined in

perpendicular space (also called internal or complementary

space). Another description is based on statistical analysis of

atomic positions in a physical space (Wolny, 1998a,b). It

reduces the structure to the hypothetical unit cell (the so-

called average unit cell, AUC). The individual atoms obtained

in such a cell do not occupy specific positions but are

continuously distributed over a certain range of positions with

a specified probability. The relevant probability distributions

can in principle be determined from the measured diffraction

patterns and on that basis the decoration of structural units

used in the modelling, such as decoration of two rhombuses

of the Penrose tiling, can be derived. This approach has

successfully been applied to structure refinement of a number

of decagonal quasicrystals (Kozakowski & Wolny, 2010;

Kuczera et al., 2012).

In this paper, we go a step further with respect to the AUC

approach. The basic structure solution is carried out in the

scattering-vector space (Fourier space); using Fourier trans-

form of the probability distributions in the AUC, one can

define the envelopes of the diffraction peaks directly

measured for particular scattering vectors. For this purpose,

unique properties of the diffraction pattern are used, allowing

for a smooth fit of the envelopes. Exact knowledge of the

peaks’ envelopes enables the crystal structure solution in the

following step.

We use the following nomenclature in this paper: direct

space is that where the structure is observed, reciprocal space

that where the diffraction pattern is observed. Both direct

space and reciprocal space in the higher-dimensional approach

have two orthogonal sub-spaces: parallel and perpendicular.

The parallel sub-space is sometimes called ‘physical’ or ‘real’.

We will use the term ‘physical’ as a synonym to ‘parallel’. It is

used to describe the sub-space in which the observations are
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made (of the diffraction pattern or of the real atomic struc-

ture) and can refer to reciprocal or direct space.

2. Fibonacci chain

A Fibonacci chain can be generated by using the following

algorithm: start the chain with an L segment and, subse-

quently, recursively replace the segments according to the

following inflation rule: L ! LS, S ! L. The first few steps

are: {L}, {LS}, {LSL}, {LSLLS}. The ratio of the number of L

segments to the number of S segments converges to � ’ 1.618

(golden ratio) as the sequence grows to infinity. If the length of

the L (long) segment is �, the length of the S (short) segment

is 1, and the start point of each segment is decorated with

an identical pseudo-atom (point), then an entirely aperiodic,

infinite set of points is obtained. It is, at the same time, strictly

deterministic (Senechal, 1995; Buczek et al., 2005). Therefore,

it is often chosen as an example of a one-dimensional quasi-

crystal. Its diffraction pattern is presented in Fig. 1(a). It

contains only Bragg peaks, which are arranged in an aperiodic

way. However, it is easy to notice that the aperiodic pattern is

actually a superposition of an infinite number of periodic

series of peaks. Three such series, marked with m = 0, 1 and 2,

are highlighted in Fig. 1(a). The periodicity of each series is the

same. In this case the period k0 is related to the average

distance between points in the chain, which is a0 ’ 1:382 and

k0 ¼ 2�=a0 ’ 4:547. The shift between any two consecutive

series is also constant and equal to k1 ¼ k051=2 ’ 10:17. Based

on these two facts, it can be deduced that it is possible to reach

the position k of any peak by using only those two periods:

k1 and k0 (by the formula k ¼ nk0 þ�km with n;m being

integers, where �km is a constant shift related to k1 for each

series; for the first three series it reads �k0 ¼ 0, �k1 ¼

k1=ð2þ �Þ ’ 2:81, �k2 ¼ ð3� � 4Þk1=5� ’ 1:07.

2.1. Envelope function

The pattern undergoes an interesting transformation when

we take away the k1 component from the peaks’ coordinates.

The result is presented in Fig. 1(b). The peak maxima form a

curve called the ‘envelope’. This curve, from the mathematical

point of view, is the square of a Fourier transform of a uniform

density function limited to a finite segment – such as the one

shown in Fig. 2(a). The inverse Fourier transform of the

unmodified diffraction pattern results in a Patterson map. It is

a density–density correlation function, indicating the distri-

bution of interatomic vectors. Similarly, the rectangular

function discussed here also has an interpretation of a density

function. In this case, however, it is a distribution of atomic

positions modified in a way related to the modification applied

to the original diffraction pattern. It is mathematically proved

(Wolny, 1998a,b; Buczek et al., 2005) that such a distribution
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Figure 1
Diffraction pattern of the Fibonacci chain. (a) Three infinite periodic
series of peaks (the envelopes of intensities and peak positions, with
period k0 and order index m) are highlighted. The pattern consists of an
infinite number of such series. The shift between any two series is an
integer multiple of k1. (b) The envelope function running over the
maxima of all peaks is the result of reducing the peaks’ positions by the
multiple of k1: w ¼ k�mk1.

Figure 2
(a) The uniform distribution of atomic positions in the AUC obtained as a
product of the inverse Fourier transform of the envelope function of the
structure factor. The dotted line is the theoretical shape of the AUC for a
Fibonacci chain. (b) The AUC is non-zero only along a line segment. This
property is called the TAU2-scaling. If P(u; v) is shifted to the points of
symmetry of the reference frame, the parameter b determines the phase
value (0 or �) of the satellite peaks.



can be obtained directly from the theoretical atomic positions

by reducing the coordinates from their original values x to the

reduced ones u, according to the equation u ¼ x mod ða0Þ. The

distribution PðuÞ is called the ‘average unit cell’ (AUC). A

reverse problem can also be resolved. We can determine the

AUC directly from the diffraction pattern and its envelope

curve, and finally also get the atomic positions of the analysed

structure. This is however not straightforward. The envelope

obtained from an experimental pattern provides information

only on the amplitude of the structure factor, which, in prin-

ciple, is a complex number. The information on the phase is

experimentally not accessible. For a centrosymmetric struc-

ture, however, the phase can be equal only to 0 or �. An

interesting feature of the envelope function is that the phase

changes its value every time the envelope function from Fig.

1(b) reaches zero. This simple rule allows us to obtain the

distribution of atomic positions (Fig. 2a) without the need to

fit the phase values iteratively.

The scattering vector k1 introduced in the previous para-

graph measures the distance between two series of periodic

peaks. Usually, however, yet another scattering vector is used

to index peak positions: q0 ¼ k0=� (Wolny, 1998a,b; Buczek et

al., 2005). This vector is called the ‘modulation vector’. Vectors

k0 and q0 can be used to point to the position of any peak:

k ¼ n1k0 þ n2q0 with n1 and n2 being integer indices of the

n1-th main peak and the n2-th satellite peak. The respective

AUC, i.e. the P(v) distribution, for the q0 vector is determined

in a way identical to k0. This time the positions are measured

with respect to the points of a reference frame with the period

of a0�. That is, for any point x, its reduced coordinate is

calculated as v ¼ x mod ða0�Þ. A single distribution P(u) or

P(v) allows one to calculate only periodic peaks at positions

n1k0 or n2q0, respectively, by taking their Fourier transforms.

To reconstruct the whole pattern, including aperiodic posi-

tions, the P(u; v) distribution has to be determined (Wolny,

1998b; Kozakowski & Wolny, 2010). To construct this distri-

bution the position of every atom must be expressed in a two-

dimensional reference frame (u; v). It turns out that this

distribution is non-zero only along a certain line, as shown in

Fig. 2(b). The black line represents the region of non-zero

probability. After a proper shift (dashed line in Fig. 2b) the

equation of the line is v ¼ ��2uþ b. The linear coefficient

(��2) is characteristic for all decagonal and icosahedral

quasicrystals. It is called the ‘TAU2-scaling’. A practical

conclusion is that if the TAU2-scaling is observed in a pattern

of the studied material, it is certain that the pattern belongs to

one of the aforementioned quasicrystalline families and not,

for instance, to twins or crystalline approximants. Further-

more, this relation significantly simplifies the derivation of the

structure factor for quasicrystals. It enables the derivation to

be carried out in the three-dimensional physical space only

and not in the abstract five-dimensional or six-dimensional

space required in the ‘cut-and-project’ approach (for higher-

dimensional analysis see: de Wolff et al., 1981; de Bruijn, 1981;

Kramer & Neri, 1984; Duneau & Katz, 1985; Kalugin et al.,

1985; Bak, 1986; Levine & Steinhardt, 1986; Elser, 1986; Jaric,

1986; Hof, 1995, 1997; Cervellino & Steurer, 2002; Takakura et

al., 2001). Finally, since the structure factor for a peak is

calculated as the mode of the Fourier transform, the TAU2-

scaling gives an immediate result for the peak’s phase: n2q0b –

on condition, however, that P(u) is symmetric.

2.2. Two periodicities

The diffraction pattern of the Fibonacci chain exhibits two

characteristic periodicities: k0 and k1. It is convenient to

introduce a two-dimensional space to fully understand the

existence of these two periodicities. Periodicity k1 leads to an

infinite set of parallel and equidistant lines. Three repre-

sentatives of this set are marked with red, olive and blue in Fig.

3. The periodicity k0 manifests itself as an infinite periodic set

of points (open circles along each of the lines in Fig. 3). If the

inclination angle of the lines related to periodicity k1 is

properly chosen, the points related to the periodicity k0 will

form a square lattice as in Fig. 3. The diffraction pattern is

observed in the physical space, also called the ‘parallel space’

(kk in Fig. 3). Peak positions are obtained by projecting the

periodic set of points from each line onto the physical space.

Colours of the dots indicating the peak positions in the

parallel space match the colour of the line from which they

were projected. The projection direction is perpendicular to

the parallel space. In this direction the so-called perpendicular

space is spanned (k? in Fig. 3). The envelope function from

Fig. 1(b) is placed in the perpendicular space (marked in

magenta in Fig. 3). It is rescaled according to the following

formula: k? ¼ w=�3, where w ¼ k modðk1Þ, and centred at

each of the parallel lines related to the periodicity k1. The

intensity of a given peak is defined by the values of the

respective envelope function at k? ¼ 0.

Two very characteristic features of the diffraction pattern of

quasicrystals can be easily explained with this construction.

The diffraction pattern is infinitely dense because the set of
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Figure 3
The diffraction pattern of the Fibonacci chain represented as a projection
of two-dimensional square reciprocal lattice onto the physical space (kk).



lines related to the periodicity k1 is infinite and the intensities

of the peaks with a higher k? component are, in general,

weaker because the envelope function decays asymptotically.

After transformation to the direct space, the Fibonacci chain

becomes the result of a projection of points from within the

so-called projection strip. A square reciprocal-lattice trans-

forms into a square lattice in the direct space and the Fourier

transformation of the envelope function of the structure factor

in the perpendicular space results in the so-called atomic

surface. Such an approach, based on construction of a

square lattice, is the foundation of the higher-dimensional

approach – the primary tool for analysis of quasicrystalline

structures.

The three methods described here, AUC, peak envelopes

and higher-dimensional ‘cut-and-project’, are perfectly

equivalent in the case of quasicrystals. There are, however,

structures not considered to be quasicrystalline or crystalline

(for instance the Thue–Morse chain), which require an infinite

number of dimensions to be properly described by the higher-

dimensional analysis. In such a case, the higher-dimensional

analysis fails and only physical-space-based approaches prove

to be useful in describing their structures (Wolny et al., 2000).

This remark pertains especially to the singular continuous

component of the diffraction pattern. Here, the physical-space

approaches allow us to assess the relationship between the

peak intensities and the number of atoms involved in the beam

scattering.

3. Penrose tiling

An example of a two-dimensional quasiperiodic structure is

the rhombic Penrose tiling (Penrose, 1974). Similarly to the

Fibonacci chain being constructed with two segments – long

and short – the rhombic Penrose tiling is constructed with two

rhombuses called thick and thin. The atoms are placed at their

vertices. A diffraction pattern of such a structure is presented

in Fig. 4. To index all peaks one needs to choose two primary

scattering vectors k1 and k2, and two appropriate modulation

vectors q1 and q2: qi ¼ ki=� (Kozakowski & Wolny, 2010;

Dąbrowska et al., 2005). As in the case of the Fibonacci chain,

the position of a peak is an integer, linear combination of

those four basis vectors. Consequently, the diffraction pattern

is a set of strictly periodic series of diffraction peaks. The

expanded AUC for rhombic Penrose tiling, sometimes also

called the periodic average structure (Steurer & Haibach,

1999), determined for a pair of vectors k1 and k2 is shown in

Fig. 5(a). Every vertex of rhombic Penrose tiling is uniquely

mapped on the expanded AUC. The same construction for

vectors q1 and q2 is shown in Fig. 5(b). A single AUC consists

of four overlapping pentagons (two large and two small) which

are the equivalents of pentagonal atomic surfaces in perpen-

dicular space. The exact shape of the AUC distribution always

depends on the choice of the scattering vectors for which the

AUC is constructed.

It is worth emphasizing again that the AUC is periodic

despite the aperiodicity of the Penrose tiling. The periodicity

of the AUC is a result of the periodicity of diffraction peaks. A

Fourier transform of the AUC gives information about one

series of peaks. To obtain the full pattern, one needs to find a

relationship between the AUCs built for vectors ki and qi (Fig.

6). It is, of course, the TAU2-scaling relationship as in the case

of the Fibonacci chain.
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Figure 4
Diffraction pattern for the rhombic Penrose tiling. Arrows indicate basis
vectors k1; k2 and q1; q2 used for the construction of the AUC.

Figure 5
The expanded AUC for rhombic Penrose tiling: (a) constructed for the
basis vectors k1 ’ ð0; 32:77Þ, k2 ’ ð31:16; 10:13Þ and (b) constructed for
basis modulation vectors q1 ’ ð0; 20:25Þ, q2 ’ ð19:26; 6:26Þ. The set of
basis vectors is indicated in Fig. 4. The blue area indicates the AUC shape
(overlapped pentagons) and the red grid indicates the rhombic Penrose
tiling.

Figure 6
TAU2-scaling of AUCs for the rhombic Penrose tiling shown in Fig. 5.
Scaling relation for (a) (ux,vx) and (b) (uy,vy) coordinates.



4. Summary

A diffraction pattern can be decomposed into periodic series

of peaks. This holds true for classical crystals, quasicrystals and

modulated structures (with commensurate or incommensurate

modulation). The periodicity observed in the scattering-vector

space (reciprocal space) is used to construct a reference frame

in the direct space. The atomic positions of a model structure

reduced to one period of a reference frame form the average

unit cell. If the ratio of periodicities of two AUCs is � (the ratio

of the scattering vectors, for which the AUCs were calculated,

is 1/�), then they are related to each other according to the so-

called TAU2-scaling. The TAU2-scaling is a linear relationship

between the non-zero density regions of the two AUCs with

the linear coefficient equal to (��2). This scaling is repre-

sentative for all commonly observed quasicrystals and enables

us to use it in a derivation of the structure factor for decagonal

quasicrystals (if their structure can be described as a decorated

rhombic Penrose tiling) and subsequently refine a number of

quasicrystalline structures (Kuczera et al., 2012).

The periodicity observed for diffraction peaks is a very

general property of the diffraction pattern and is not limited

only to quasicrystals. A series of peaks can be used to

construct the envelope function, which, mathematically

speaking, is a Fourier transform of the AUC. The AUC on the

other hand, is a distribution of reduced atomic positions, i.e.

atomic positions taken modulo the unit cell of the reference

lattice. The phases of the peaks can be determined from the

properties of the envelope function. Because this approach is

general and well defined in a mathematical sense, it can be

used in the refinement of different complex structures like

proteins, for instance. It should be stressed again that the

approach does not require the structure to be periodic,

because the periodic series of diffraction peaks are a product

of any Fourier transform calculated over a density function.

The approach gives meaningful results not only for Bragg

peaks but also for the singular continuous component (which

scales in a fractal way with the number of scattering atoms),

and continuous component (diffuse scattering), of a diffrac-

tion pattern. This universality leads to the conviction that by

using it in a refinement process of any, not necessarily peri-

odic, structures it will be possible to take advantage of the

whole information stored in a diffraction pattern and not only

in the Bragg peaks.

Using the method presented in this article, the envelopes of

the diffraction peaks may be determined directly from the

diffraction pattern without having to re-calculate the Fourier

transforms iteratively, which is the case for the standard

procedures during structure determination (e.g. Palatinus &

Chapuis, 2007; Palatinus, 2013). The envelopes of diffraction

peaks are modelled in the physical sub-space of the reciprocal

space, the same in which the diffraction patterns are observed.

Experimentally determined envelopes with the phase analysis

and scaling relations lead to the probability distributions in the

physical sub-space of the direct space obtained by a Fourier

transform. Knowing these distributions allows us to determine

the positions of atoms decorating the structural units of any

tiling, periodic or aperiodic. All calculations are carried out in

the experiment-related physical space, both direct and reci-

procal, and do not require higher-dimensional analysis.
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